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Introduction

CC-1065 and the duocarmycins (1—3, Figure 1) are the
parent members of a potent class of antitumor antibiotics
which derive their biological properties through the
sequence-selective alkylation of DNA.*? Although unre-
active toward conventional nucleophiles at pH 7, the DNA
alkylation reactions by 1—3 are exceptionally facile, pro-
ceeding in <1 h at 4—25 °C.

Consistent with the idea that the DNA alkylation
sequence selectivity originates in the noncovalent binding
selectivity of the agents (shape-selective recognition),3-10
recent studies have established that the catalysis is derived
from a DNA binding-induced conformational change in
the agent which activates it for nucleophilic attack.'! This
conformational change disrupts the ability of the N?2
nitrogen to convey stability to the alkylation subunit
through vinylogous amide conjugation. Further, we have
suggested that this binding-induced activation is a general
consequence of the forced adoption of a helical confor-
mation upon AT-rich minor groove binding. Since this
conformational change is dependent upon the shape of
the minor groove and greatest within the narrower, deeper
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DNA Alkylation Reaction

» Shape-dependent catalysis: Preferential activation in AT-
rich minor groove, binding-induced twist greatest in narrower,
deeper AT-rich minor groove

* Shape-selective recognition: Preferential binding in AT-
rich minor groove, noncovalent binding greatest in narrower,
deeper AT-rich minor groove

* DNA bound agent adopts helical confirmation: twist ca. 45°
* DNA bound agent maintains full amide: %2 ca. 0°

* Vinylogous amide conjugation diminished: x1 ca. 20-40°

* Cyclohexadienone structure destabilized

FIGURE 1. Structures of CC-1065 and the duocarmycins.

AT-rich minor groove, this leads to preferential activation
within the AT-rich noncovalent binding sites. This ground-
state destabilization of the agents upon binding to DNA
represents a beautiful example of shape-dependent ca-
talysis and is the key to the ability of this family of
compounds to selectively alkylate DNA.

Origin of Stability: C-Ring Analogues and the
Vinylogous Amide

We have examined a series of analogues of the CC-1065
and duocarmycin alkylation subunits in efforts to define
the fundamental relationships between structure, chemi-
cal reactivity, and the corresponding biological properties
(Figure 2). Replacing the A-ring pyrrole found in 1—3%14
with a benzene ring allowed for a simplified synthesis of
modified and effective alkylation subunit analogues. The
first example of such simplified derivatives was CBI (6),°
which was found to be more stable (4 x), biologically more
potent (4x), and synthetically more accessible than CPI
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FIGURE 2. Analogue structures examined.

Scheme 1. Hydrolysis and Solvolysis of Duocarmycin Analogues
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(5), the alkylation subunit of CC-1065. When coupled to
appropriate DNA binding subunits, CBI displayed a
sequence selectivity identical to that of the natural prod-
ucts, a comparable or greater DNA alkylation efficiency,
and a faster alkylation rate. With these properties, CBI
provided an ideal template on which further studies could
be conducted.

Central to the issue of catalysis was the inherent
stability of the alkylation subunits. While 1—3 and related
CBI-based analogues are exceptionally stable and exhibit
no solvolysis reactivity at pH 7, they react rapidly with
DNA (<1 h). At the outset, it was recognized that the
nitrogen in the alkylation subunits provided vinylogous
amide stabilization to the spirocyclopropylcyclohexadi-
enone, but the quantitative assessment of this stabilization
had not been established. Perhaps the earliest qualitative
evidence illustrating the impact of the vinylogous amide
is found in the hydrolysis of the linking amide, which can
be accomplished under unusually mild conditions with
LIOH (25 °C, <1 h), and a representative example is
provided in Scheme 1.16 Similarly, the related p-quinon-
emethide 10, also bearing a vinylogous amide, proved
unusually stable and isolable.'” By contrast, it was known
from the studies of Baird and Winstein that simple
spirocyclopropylcyclohexadienones lacking this nitrogen
(e.g., 11), were highly reactive.’® To establish a more
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Table 1. X-ray Structures and Reactivity: Structure/
Reactivity Correlations

d
OMe ,
Moo

“ﬁ% 1 \[gO’B “ NgrOMe

o ¢ o]

X-ray bond lengths N-CO,Me-CBI N-BOC-CBQ N-CO,Me-CNA
a 1.521 1.528 1.565
b 1.544 1.543 1.525

c 1.390 1.415 1.428
d 1.372 1.379 1.357
X-ray dihedral angles

X1 6.9° 34.2° 86.4°
X2 45° 8.7° 3.9°
solvolysis reactivity (BOC derivatives)

ti/2, (PH 3) 133 h 21h 0.028 h
tio, (PH 7) stable 544 h 21h

¢ CBQ

X-ray bond lengths  CBI cBQ CNA

a 1.508 1.525 1.543
b 1.532 1.539 1.551

c 1.337 1.336 1.376
solvolysis reactivity

tiyo, (PH 3) 930 h 91h 0.62 h
t/o, (PH 7) stable stable 563 h

gquantitative assessment of the stability of the alkylation
subunits, a series of analogues with modifications to the
fused five-membered C-ring were prepared.

o} o}

10 "

CBIn (9)*° was prepared to establish directly the extent
and ramifications of the vinylogous amide stabilization.
The comparison of CBIn (9) with CBI revealed that the
presence of N? and the vinylogous amide increases
stability 3200x at pH 3 and >10%—10%x at pH 7. This was
further documented with the synthesis and evaluation of
C-ring expanded analogues, CBQ (7)®* and CNA (8),%* for
which X-ray structures were obtained. The reactivity
increases that occur in the series CNA > CBQ > CBI are
the consequence of the relative extent of vinylogous amide
conjugation. This feature can be observed directly in their
X-ray structures with the diagnostic shortening of the C3%—
N2 bond length (bond c, Table 1). N-Acylation (e.g., N-CO,-
Me-CBI versus CBI) reduces the vinylogous amide con-
jugation, lengthens bond c, and results in a substantial
increase in reactivity, and this trend is observed with each
of the three sets of agents (Table 1 and Figure 3).
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tip = 133 h (pH 3)

1.337 A
ti2 = 4200 h (pH 3)

* N-Acylation decreases vinylogous amide cross conjugation
* N-Acylation increases cyclopropane conjugation (bond lengths)
* N-Acylation increases cyclopropane reactivity

FIGURE 3. Effect of N-acylation on structure and reactivity.

Accompanying this reduction in the vinylogous amide
conjugation is an increase in length of the reacting
cyclopropane bonds and a readjustment of the cyclopro-
pane alignment to a more idealized geometry with respect
to the cyclohexadienone z-system. This illustrates that
both the cyclopropane conjugation and its inherent
reactivity increase as the cross-conjugated vinylogous
amide s-overlap is diminished.

More importantly, these same trends are observed
within the N-acyl series. As one moves across the series
of N-CO,Me-CBI, N-BOC-CBQ, and N-CO,Me-CNA, the
length of bond c increases (1.390, 1.415, and 1.428 A),
diagnostic of the increasing loss of vinylogous amide
stabilization (Table 1 and Figure 4). Correspondingly, the
length, conjugation, and reactivity of the scissile cyclo-
propane bonds increase, tracking with the relative reactiv-
ity of the agents. Accompanying these changes and
responsible for this loss of vinylogous amide conjugation
is an increase in the y; dihedral angle, also diagnostic of
the vinylogous amide stabilization (0° = maximal orbital
overlap). Throughout this series, the y, dihedral angle is
ca. 0° illustrating the preferential maintenance of the
carbamate versus vinylogous amide conjugation.

The exception to this correlation is in the NH series
with CBI and CBQ and can be attributed to the perfect
geometrical alignment of the CBQ cyclopropane, not
accessible to CBI, which increases cyclopropane conjuga-
tion and corresponding reactivity. That is, CBQ is more
reactive (ca. 10x) than CBI because of its idealized
cyclopropane alignment. In contrast to CBI and CBQ,
which have similar ¢ bond lengths but different cyclopro-
pyl alignments, CBQ and CNA have similar cyclopropane
alignments but substantially different y; dihedral angles
and different ¢ bond lengths of 1.336 versus 1.376 A,
respectively. This difference, diagnostic of the extent of
vinylogous amide conjugation, is accompanied by an even
larger increase in the CNA scissile cyclopropane bond
lengths, indicative of a greater degree of conjugation, and

Regioselectivity
>20:1
tijo =133 h (pH 3) sma
ty/0 = stable (pH 7)
(BOC derivative)
. _ o 1528 A
O ; x1=34.2 o
C g
0" _jj\ -2 - 3:2
1.415 A —52> o, / m\% 287
@]
tip=2.1 h(pH3) 1543 A
tyo = 544 h (pH7)
1 =86.4° 155& %?
11a 38.5
o} N s
<1:20
o={_ 1487 |® )
OMe
tip = 0.03h (pH 3) oo
fia=2.1 h (pH7) 1625 A

(BOC derivative)

« 10* x increase in reactivity down the series

» Complete reversal of reaction regioselectivity

* Decreases in vinylogous amide cross-conjugation
« Increases cyclopropane conjugation (bond lengths)
* And increases cyclopropane reactivity

FIGURE 4. Effect of y; dihedral angle on structure and reactivity.

accounts for over a 100-fold difference in reactivity. Thus,
the degree of cyclopropane conjugation and its resulting
reactivity are related not only to the extent of vinylogous
amide conjugation but also to its accessible geometrical
alignment.

The pH Dependence of DNA Alkylation and
Model Reactions Requires a pH-Independent
Alkylation Reaction

The pH dependence of the rate of DNA alkylation for
duocarmycin SA over a physiologically relevant range has
been examined in detail.1>?? The rate of DNA alkylation
was found to increase only slightly with decreasing pH,
and the rate change was remarkably small (<2x over 2
pH units), inconsistent with a first-order dependence of
acid concentration (Figure 5). Moreover, between pH 7
and 8, no rate dependence on acid concentration was
observed, establishing that the DNA alkylation reaction
of duocarmycin SA is not acid-catalyzed.

While 1-6 are not sufficiently reactive at pH > 3 to
allow study of their pH rate dependence, the reactivity of
CBQ, CNA, and CBIn approximates that required of the
DNA alkylation reaction and allows more expansive pH
rate profiles to be studied (Figure 5).2% Importantly, X-ray
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pH k(s Kl

6.0 2.83x107 1.89
6.6 1.99x107* 1.32
7.1 1.69x107* 1.12
7.6 158 x 107 1.05
8.1 1.50x 107 1.00

» Acid-catalyzed at pH < 5
* Uncatalyzed reaction dominates at pH > 5-6
« DNA alkylation reaction is not acid catalyzed

FIGURE 5. pH rate profiles of solvolysis and the DNA alkylation
reaction.

analysis of the series 6—8 revealed corresponding struc-
tural and reactivity changes that we suggest are analogous
to those accompanying the DNA binding-induced con-
formational change and activation of 1—3. Thus, we view
the pH rate profiles of CBQ, CNA, and CBIn as being
representative of those of the DNA-bound and activated
structures of 1—3. The solvolysis of 7, 8, and 9 exhibits a
first-order rate dependence on hydronium ion concentra-
tion only in the region of pH 2—5, where the reaction is
acid-catalyzed, and the uncatalyzed Sy2 reaction rate
dominates at pH > 5—6. Just as surprising, the rates of
the pH 7 reactions were independent of buffer concentra-
tions, indicating not only that the reactions are not specific
acid-catalyzed but also that they appear not to be general
acid-catalyzed.?** This established that the assumed
requirement for acid catalysis of the DNA alkylation
reaction is not necessary, which is consistent with the lack
of an experimental pH dependence and indicates that
reaction models??4?> or alkylation selectivity models??26
based on pH 2—3 studies and a requirement for acid
catalysis are unlikely to be accurate. More importantly, it
illustrates that the structural and corresponding reactivity
features embodied in 7—9, which we suggest are analo-
gous to those accompanying the DNA binding-induced
conformational change in 1—3, are sufficient to provide
activation for an uncatalyzed Sy2 nucleophilic attack
independent of pH.
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Table 2. Solvolysis Reactivity

o)
MeO o MeO 5 MeO 5
N N N
Me Boc Me PIV Me Me
OMe OMe OMe
N-BOC-12 N-PIV-12 N-Me-12
k ti2
agent (s', pH 3) (h, pH 3) regioselectivity
BOC-12  7.28x107° 955 >20: 1
PIV-12  6.41x107° 108 s nd
Me-12  9.00x 107 77s >20 : 1
k ti2
agent (s',pH7) (h, pH7) regioselectivity
BOC-12  6.79x 107 17 min >20: 1
PIV-12  8.88x107* 13 min nd
Me-12  4.20x107° 275 min >20 : 1
2 N Reactivity:
MeO ‘S
R = Me > BOC > PIV (pH 3, H* catalyzed)
Me N R=Me<BOC < PIV (pH 7, uncatalyzed)
OMe

Reversal of Inherent Reactivities of Model
Alkylation Subunit Derivatives at pH 3
(Acid-Catalyzed) and pH 7 (Uncatalyzed)

Consistent with this dominant uncatalyzed reaction at pH
> 5—6, the reactivity order of a series of derivatives of a
reactive alkylation subunit inverted at pH 7 versus pH 3
(Table 2).2” Thus, N-PIV-12 was the most stable derivative
at pH 3, followed in order by N-BOC-12 and N-Me-12.
For this very reactive alkylation subunit, the most easily
protonated compound exhibits the greater reactivity at pH
3. At pH 7, where the uncatalyzed reaction dominates, the
order is reversed, and N-Me-12 is the most stable agent
with the greatest degree of vinylogous amide stabilization,
followed in order by N-BOC-12 and N-PIV-12, in which
the vinylogous amide conjugation is partially and progres-
sively diminished by the carabamate and amide conjuga-
tion, respectively. This simple observation has significant
ramifications. The reverse order of reactivity at pH 7 for
the very reactive alkylation subunit is consistent only with
the switch from an acid-catalyzed reaction (pH 3) to one
which is uncatalyzed (pH 7). This observation, made only
very recently, is expected to extend to the reactive deriva-
tives of CNA and CBQ, and such studies have been
initiated.

Critical Role of the Linking Amide

The culmination of these studies was the synthesis and
evaluation of 13, in which the linking N? amide was
replaced with a methylene group.? Its examination po-
tentially could distinguish catalysis derived from disrup-
tion of the vinylogous amide by a DNA binding-induced
conformational change. This source of catalysis would be
lost with 13, rendering it ineffective, whereas acid catalysis
might be enhanced by the increased basicity of the C4
carbonyl.
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Table 3. Critical Impact of the Linking Amide

OMe
7
N
H OMe
OMe
CBI-TMI 13
tie (PH 1) nd 80 h
tis (PH 2) 12.5h 824 h
ty (PH 3) 133 h 30000 h
ICsp (L1210) 30 pM 1.4 uM
DNA alkylation 10— 1077 >107'M

* Demonstrates critical role of linking amide for
« DNA alkylation rate and efficiency
* Biological activity
* Reactivity and catalysis

Compound 13 proved remarkably stable to acid-
catalyzed solvolysis, consistent with an increased stabili-
zation derived from the fully engaged vinylogous amide
(Table 3). Not only was it found to be completely stable
at pH 7, but it also exhibited an acid-catalyzed solvolysis
half-life of ca. 30 500 h (ca. 3.5 years), even at pH 3.
Removal of this linking amide also resulted in a 10*—105x
reduction in cytotoxic potency and an inability to alkylate
DNA, even under harsh conditions (37 °C, 2—14 d). Thus,
the vinylogous amide stabilization against the reaction
derived from the amine plays a greater role than carbonyl
basicity. Rather than enhancing DNA alkylation, the
removal of the linking amide abolished the capabilities
for DNA alkylation, consistent with catalysis derived from
a DNA binding-induced conformational change that
disrupts vinylogous amide stabilization, thereby activating
the agents for nucleophilic attack.

Balance between Stability and Reactivity:
Modifications to the Linking Amide

The loss in properties with 13 led to a further probe of
the role of the N2 amide with the synthesis and evaluation
of 14 and 15, in which the linking amide was replaced
with an amidine and thioamide, respectively (Table 4).2°
The thioamide proved to be a more reactive agent,
consistent with the greater thioamide conjugation reduc-
ing the vinylogous amide stabilization of the alkylation
subunit. In contrast, the amidine was far more susceptible
to hydrolysis rather than solvolysis even at neutral pH,
indicating preferential vinylogous amide conjugation and
stabilization at the expense of the stability of the linking
amidine. These observations are consistent with the
predicted relative conjugation derived from estimates of
barriers to rotation [thioamide > amide > vinylogous
amide (ca. 12.2—14.5 kcal/mol) > amidine].?® The en-
hanced properties of the amide versus amidine or thio-
amide establish the N? amide as the optimum linking unit

Table 4. Impact of Modifications to the
Linking Amide

OMe

N
H OMe
OMe

X=8 X=0 X =NH

ICsp (L1210, nM) 1.0 0.02 0.75
ti/2 (solvolysis, pH 3, h) 160 230 12 (hydrolysis)

Rotation Barrier (kcal/mol) 20.7 18.1 12.8

Hammett o, ((NHC(=X)CHz) ~ 0.00  0.12 -0.09 (=NH,")

« Preferential linking amide conjugation (X = S, O)

« Preferential vinylogous amide conjugation (X = NH)

* Linking amide (X = O) represents optimal balance
between competing amide (reactivity) and
vinylogous amide (stability) conjugation

Table 5. Key Substituent Effects on Reactivity

X (R = BOC) tp (pH =3) Op
OMe (16) 110h -0.28
H (6) 133 h 0.00
CN (17) 213h 0.70
R(X=H) tiz (PH = 3) Sp
CONHCH;  36h 0.72
CO,CH4 59 h 0.48
COEt 96 h 0.45
p=-3.0 SO,Et 383 h 0.36

 C7 substituent effect is exceptionally small
* N2 substituent effect is exceptionally large
 Large change in reactivity accompanies

a small perturbation in the vinylogous amide

and reveal that it provides a beautiful balance between
competing amide (reactivity) and vinylogous amide (sta-
bility) conjugation.

Substituent Effects on Reactivity: N2- versus
C7-Substituted Analogues

We have conducted two studies which employ a classical
Hammett series to establish the magnitude of substituent
effects on reactivity (Table 5).33! The C7 substituent
effects were established with a series of CBI derivatives
and were found to be exceptionally small: p = —0.30.
Although the introduction of a strong electron-withdraw-
ing group slowed acid-catalyzed solvolysis and the intro-
duction of a strong electron-donating substituent accel-
erated solvolysis, the effect was very small, and only a
2-fold solvolysis rate difference between N-BOC-CCBI (17,
X = CN)* and N-BOC-MCBI (16, X = OMe)* was
observed. In contrast, the nature of the N2 substituent had
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Table 6. Key Substituent Effects on DNA
Alkylation Rate

Table 7. Structural Features Required for
DNA Alkylation

X= CN H OMe
rel k (solv., pH 3) 0.7 1.0 1.2
rel k (DNA alkyl.) 2.9 1.0 1.9

* Impact of C7 substituent on DNA alkylation rate
is related to its presence rather than electronic nature
* Extended length of alkylation subunit increases
inherent twist of linking amide upon DNA binding

an exceptionally large effect: p = —3.0. Thus, consistent
with previous observations, a large change in reactivity
accompanies even a small perturbation in the nature of
the vinylogous amide.

Noncorrelation between pH-Dependent
Reactivity and DNA Alkylation Rates

Another important observation made with the CBI ana-
logues was that the relative rates of DNA alkylation did
not follow the relative rates of acid-catalyzed solvolysis,
consistent with the pH-independent catalysis derived from
a DNA binding-induced conformational change (Table
6).%° Because of the structural similarity of 6, 16, and 17,
it is unlikely that the subtle structural differences could
contribute to an alteration of the expected reactivity order.
Rather, the unexpected order of DNA alkylation rates was
influenced by an effect intimately linked to catalysis. In
this series, the impact of the C7 substituent (R = CN >
OCHj3; > H) is related to its simple presence rather than
its electronic nature (R = OCH; > H > CN). This effect
may be attributed to the resulting extended length of the
alkylation subunit and the corresponding increase in the
inherent twist of the linking N? amide that would ac-
company minor groove binding.

Right-Hand Subunit Rigid Length Requirements
for Catalysis: Simple, Extended, Reversed,
and Sandwiched Analogues

The rates of DNA alkylation by simple derivatives of the
alkylation subunits (4—6) are much slower than those for
1-3. Their DNA alkylation reaction requires much higher
agent concentration (10*x), more vigorous reaction con-
ditions (37 °C), and much longer reaction times (24—72
h).2=410 Several explanations have been advanced to
account for this, including the rate enhancement derived
from the noncovalent minor groove binding of the full
agents, proximity effects imposed on the DNA-bound
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NH,

@;5 (O

8, (+)-DSA-CDPI, \\(NHQ
N O
l
MEOZC 4 fo)
N (0]

)-CDPI-DSA-CDPI < OMe
w/ﬁ ¢
N
O H
MQOQC

+)-CDPI,-DSA

2"

) N.__OtBu

Meo,c— | \[g
N
H

(+)-N-BOC-DSA

selectivity rel. DNA alkyl. rate

(+)-19 16500
(+)-20 1
(+)-N—BOC DSA 0.1

()20 (+)-18 13000
)-2
-)-1

* Rapid reaction requires rigid, extended N? amide substituent
* DNA alkylation rate of reversed agent 20 is similar to N-BOC-
DSA (no catalysis)

agents, or the relative degree of reversibility of the adenine
N3 alkylation. All invoke a benefit derived from the DNA
binding or stabilization provided by the noncovalent
contacts of the attached right-hand subunit. We addition-
ally now know that, in the absence of the extended and
rigid right-hand subunit, minor groove binding no longer
requires an induced twist in the linking amide, depriving
the agent of the activation toward DNA alkylation.

The examination of the reversed (18) versus extended
(19) and sandwiched (20) analogues of duocarmycin SA
established that the presence of the extended heteroaryl
N? amide substituent conveys a special DNA alkylation
reactivity that is independent of the alkylation sites (Table
7).210 It was shown that reversal of the orientation of the
DNA binding subunits results in the complete reversal of
the inherent enantiomeric DNA alkylation selectivity: ent-
(—)-CDPI,-DSA = (+)-DSA-CDPI; and (+)-CDPI,-DSA =
ent-(—)-DSA-CDPI,. In addition, both enantiomers of the
sandwiched agents (CDPI-DSA-CDPI) alkylated the same
sites and did so with a selectivity distinct from those of
the extended or reversed agents. These studies established
that the preferential AT-rich noncovalent binding selectiv-
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Table 8. Substituent Effects on DNA Alkylation
Efficiency, Rate, and Biological Potency

DSA rel. alkylation ICsq  CPl rel. alkylation
efficiency and rate L1210 efficiency and rate

D

5 oMe efficiency ki efficiency kg

1.0 1.0 10 pM 0.1 0.08
OMe

OMe

1.0 1.0-05 12pM 0.1-0.05 nd

0.2 nd 25 pM nd nd
OMe

0.1 nd 60 pM nd nd

Iz \é Iz \g I= \E IZE \E
(@]
N
@ »

o
<
®

0.05 0.05 65pM 0.01  0.004

I= \é

Minor groove imbedded
<« | substituents that extend
rigid subunits length

o y OMe
(o} N
h OMe
OMe

DNA Binding Subunits
* Stabilize reversible DNA adduct
* Accelerate rate of DNA alkylation
* Extend AT-rich binding selectivity
* DNA alkylation catalysis: extended
length increases conformational
change upon DNA binding

ity of the agents controls the DNA alkylation sequence
selectivity and that the natural and unnatural enantiomers
are subject to the same polynucleotide recognition fea-
tures. In addition, there was a substantial change in the
rate of DNA alkylation with the reversed agents. While the
DNA alkylation rate of the extended and sandwiched
agents is exceptionally fast, that of the reversed agents is
exceptionally slow, proceeding at rates similar to those
of the simple derivatives lacking a DNA binding subunit,
e.g., N-BOC-DSA. The distinguishing feature between the
extended or sandwiched analogues and the reversed
analogues is the presence of the right-hand heteroaryl N2
amide substituent. Thus, a rigid extended N2 amide
substituent is required for rapid and effective alkylation
of DNA. With the sandwiched analogues, this effect is

independent of the sites of DNA alkylation and the
enantiomeric configuration of the alkylation subunit. In
contrast, the N2 amide of the reversed agents is not altered
upon binding; thus, the agents are not activated for
nucleophilic addition. Consequently, they undergo DNA
alkylation at rates comparable to those of the simple
derivatives themselves, which also lack a rigid, extended
N2 amide substituent.

Substituent Effects on the Rate and Efficiency
of DNA Alkylation

Additional and related subtle factors contribute to the
properties of duocarmycin SA. Both the left-hand subunit
C6 methyl ester and the right-hand subunit C5' methoxy
group independently increase biological potency (ca.
5-10x) and DNA alkylation efficiencies and rates (ca.
5—20x) (Table 8).193% Both of these substituents are deeply
embedded in the minor groove with the DNA-bound
agent, and both can provide stabilizing, noncovalent
binding contacts that may account, in part, for their
importance. However, it is the simple presence of these
substituents which increase the rigid length of each
subunit, and increase the inherent twist in the DNA-
bound conformation, that serves to enhance the proper-
ties. This more effectively disrupts the vinylogous amide
stabilization in the alkylation subunit and further increases
the inherent reactivity of the DNA-bound agent.

Notably, similar observations with the substituted CBI
analogues 16 and 17 (Table 6) have been made and
illustrate that the effect is unrelated to the electronic
nature of the substituent and related simply to the
presence of such a substituent. Consistent with this, (+)-
duocarmycin SA alkylates DNA 12—13x faster and with a
10-fold greater efficiency than the unsubstituated CPI-TMI
(Table 8), despite being intrinsically 6x less reactive.3?

NMR Studies: Bound Conformation

In collaboration with Chazin and co-workers,3 the as-
sessment of the binding-induced conformational change
in duocarmycin and related analogues by NMR analysis
of the covalent adducts with d(GACTAATTGTC)-d(GAC-
AATTAGTC) has been studied. The high-resolution struc-
tures of three closely related adducts have been deter-
mined, and the most pronounced feature of the structures
is the relative intersubunit twist in the agents induced by
binding in the minor groove. Moreover, there is a good
correlation between binding-induced twist in the y;
dihedral angle and the relative rate and efficiency of
alkylation, accounting for not only the behavior of simpli-
fied analogues but also that of the unnatural enantiomers
(Table 9). In the three structures established to date, little
perturbation in the DNA structure is observed, and it
appears that it is the DNA that alters the conformation of
the bound agent and not the bound agent which alters
the DNA conformation.
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Table 9. Structures of DNA-Bound Agents and the
Importance of y1

MeQO,C

1
X2
N OMe
@ N OMe o] N
()3 Ho e (+)-21 H

)
(+)-DSA-Indole

(+)-duocarmycin SA
%1 22.4° 14,2°
%2 11.0° 13.4°
Intersubunit Twist 44.8° 37.3°
Rel. DNA Alkylation Efficiency 1.0 0.05
Rel. DNA Alkylation Rate 1.0 0.04
Rel. 1C5p (L1210) 1.0 (5pM) 0.08 (65 pM}

* Terminal C5 methoxy group increases inherent twist
in DNA bound conformation (3 1)

+ Accounts for distinctions in DNA alkylation rate and
biological potency

(+)-Duocarmycin SA

Reversibility: The DNA-Bound Conformation
Disfavors Retroalkylation and Stabilizes the
DNA Adduct

In contrast to intuitive expectations, the cyclopropane ring
is very easily introduced through an Ar-3' spirocyclization
(e.g.,, NaHCOs3). In early studies, this suggested that the
DNA adenine N3 adduct should be formed in a readily
reversible manner.t* Ultimately, this proved to be ac-
curate, although the degree of reversibility was lower and
the rate of retroalkylation was slower than chemical
precedent would suggest.®>% The unusual stability of the
DNA adducts and the slow rates of retroalkylation have
been attributed to the noncovalent binding stabilization
provided by the right-hand subunits. We now suggest that
the adoption of the DNA-alkylated conformation no longer
facilitates Ar-3' spirocyclization with reversal of the DNA
alkylation reaction and that this contributes to the unusual
stability of the DNA adducts. Thus, not only does this
conformational change that results in ground-state de-
stabilization resulting from diminished vinylogous amide
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conjugation account for the rate acceleration for formation
of the adduct by lowering the apparent activation energy,
but it also contributes to a shift in the reaction equilibrium
to favor adduct formation since the DNA adduct is not
similarly destabilized by adopting a helical conformation.

Conclusions

The examination of a series of CC-1065 and duocarmycin
analogues containing well-devised, deep-seated structural
changes resulted in the discovery and establishment of
an unusual and initially unappreciated source of catalysis
for the DNA alkylation reaction. This catalysis is derived
from a DNA binding-induced conformational change that
disrupts the alkylation subunit vinylogous amide conjuga-
tion and stabilization, activating the agent for nucleophilic
attack. This activation, which is greatest within the nar-
rower, deeper AT-rich minor groove (shape-dependent
catalysis), represents a beautiful complement to the
preferential AT-rich minor groove binding of the agents
(shape-selective recognition), where the binding-induced
activation simply cocks the pistol but does not pull the
trigger, for reaction. Hence, only upon binding to its target
DNA site does the agent acquire sufficient reactivity to
undergo nucleophilic attack.

We gratefully acknowledge the financial support of the National
Institutes of Health (CA41986, D.L.B.) and the award of an ACS
Organic Division Fellowship, sponsored by Zeneca Phamaceuticals
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